

Population K-PD modeling of CA 125 and tumor size kinetics in relapsed ovarian cancer patients

Mélanie Wilbaux¹, Benoit You¹, Olivier Colomban¹, Amit Oza², Gilles Freyer¹,

Emilie Henin¹, Michel Tod¹

¹ EMR 3738 CTO, UCBL - HCL Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France;

² NCIG – CTG, Princess Margaret Hospital, Toronto, Canada.

Objectives

Introduction

• Ovarian cancer:

- The leading cause of death among cases of gynecologic cancer
- The majority of patients present with advanced stage of disease at the time of diagnosis, and 70% of them relapse \rightarrow Poor prognosis

This study aimed to develop a K-PD model characterizing CA 125 and tumor size kinetics, using a population nonlinear mixed-effects modeling approach.

Methods

- Data:
- 533 patients: medians of 10 CA 125 values (U/ml), 4 tumor sizes observations (mm) and 17 covariates per subject
- CA 125: tumor marker for epithelial ovarian cancer (90% of all ovarian cancers) [1]

• CALYPSO trial:

- Carboplatin-Paclitaxel (C-P) vs Carboplatin-Pegylated Liposomal Doxorubicin (C-PLD) in relapsed ovarian cancer
- Results: superiority in PFS and better therapeutic index of C-PLD over standard C-P [2]
- CA 125 : Box Cox transformation. Tumor size : Log transformation

Model:

- Absence of PK data \rightarrow K-PD model
- Population analysis (NLME) with Monolix 3.2
- Criterion for model selection and covariates inclusion: Objective Function (nested models) and AIC (non-nested models)
- Model evaluation: GOF, simulation-based diagnostic (VPC ...)

Estimated parameters:

Parameter	Unit	Estimate	R.S.E (%)	IIV (%)	R.S.E (%)
K1 (nb. cycles < 6)	day^{-1}	0.0262	5	98.2	4
<i>K</i>1 (nb. cycles > 6)	day^{-1}	0.0135	5		
K _{in} TS	$mm.day^{-1}$	2.85	7	144	4
β (nb. cycles < 6)	day^{-1}	0.000204	15	107	10
β (nb. cycles > 6)	day^{-1}	0.00054			
Q50	AU	0.375	6	107	4
K _{out} TS	day^{-1}	0.0536	7	147	4
α	$U.ml^{-1}.$ $day^{-1}.mm^{-1}$	0.368	7	133	4
KJ	mm^{-1}	0.0437	5	78.7	5

Results

Model evaluation :

Covariates:

 β increases with the number of cycles \rightarrow Chemoresistance

Medians estimated parameter\Treatment	C - P	C - PLD
<i>K</i> 1	0.024	0.033
K _{in} TS	3.242	2.463
β	0.0002	0.0002
Q 50	0.388	0.456

• Q50 (C-P) > Q50 (C-PLD) :

K _{out} TS	0.057	0.047
α	0.357	0.289
<i>K</i> 2	0.044	0.040
K _{out} CA	0.599	0.608

- VPC for CA 125 : the model seems to overestimate the variability
- Tumor size values : not match the total tumor, but a target lesion
- CA 125 : lack of sensitivity and specificity = possible discrepancy with tumor size
- First combined model characterizing CA 125 and tumor size kinetics in relapsed ovarian cancer patients receiving chemotherapy
- Leads to better understanding of CA 125 as biomarker and its use for treatment monitoring and/or evaluation References
- [1] R. C. Bast, R. C. Knapp. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest, 68(5) :13311337, Nov 1981.
- [2] E. Pujade-Lauraine. Protocol : Calypso a multi-national, randomized, phase iii, gcig intergroup study comparing pegylated liposomal doxorubicin (caelyx R) and carboplatin vs. paclitaxel and carboplatin in patients with epithelial ovarian cancer in late relapse (>6 months). 2005.