

In silico evaluation of the estimation of patient compliance based on limited pharmacokinetic information

AAPS 2008 Poster # W4310 Emilie Hénin¹, Véronique Trillet-Lenoir^{1,2}, Brigitte Tranchand^{1,3}, Michel Tod¹, Pascal Girard¹

¹ EA3738 CTO, Faculté de Médecine Lyon-Sud, Université de Lyon; ² Service d'Oncologie Médicale, Hospices civils de Lyon; ³ Centre Léon Bérard, Lyon

Purpose_

Develop and evaluate *in silico* a method to estimate patient compliance to an oral chemotherapy from :

- (i) an *a priori* population pharmacokinetic (PK) model,
- (ii) limited optimal PK information collected on day 1,
- (iii) a single PK sample collected after multiple doses.

Methods____

Idea of the compliance estimation method

Extract the compliance information from a single PK sample by comparing it to corresponding predicted concentration computed with a pop PK model and Bayesian individual parameters

- · 8 compliance patterns were defined as the sequence of last
- 3 doses taken or not (Figure 1)
- Key step was to impute the dosing pattern to the one minimising the "distance" between observed and predicted concentration
- This classification algorithm was evaluated by repeated simulations

Simulation procedure

- 1000 PK parameter sets drawn according to *a priori* population distributions and each simulated patient assumed to have a given compliance pattern
- · Simulation of sparse conc. on day 1 and one conc. on day 10
- Re-estimation of individual Bayesian PK parameters based on day 1 sparse samples
- Comparison of the actual concentration versus the predicted ones computed according to each pattern
- Choice of the compliance profile which minimises the distance between actual and predicted value

Performance of the compliance estimation

Evaluation at several time points after last taking on day 10

- · Last1T: % patients for which last taking is well predicted
- · Last2T: % patients for which last 2 takings are well pred.
- · Last3T: % patients for which last 3 takings are well pred.

In silico evaluation____

Population PK models:

Imatinib ($t_{1/2}/\tau = 0.625$) [†]

- \cdot One compartment pop PK model published by Widmer et al^1 with first order absorption and elimination
- . Residual variability modelled with an exponential error model with CV 31%
- . 500 mg once daily
- \cdot 4 PK samples taken on day 1 at 0.1, 1.6, 7.1 and 18 h
- · 1 PK sample taken on day 10

Capecitabine/FBAL ($t_{\gamma_2}/\tau = 0.25$) [†]

- Cascade model for capecitabine and metabolites published by Gieschke et al². FBAL is capecitabine metabolite with the longest plasma half-life (approx. 3 hours)
- . Residual variability modelled with an exponential error model with CV 20\% $\,$
- · 2000 mg twice daily for 14 days / 1week rest
- \cdot 4 PK samples taken on day 1 at 4.5, 6, 13.5 and 18 h
- · 1 PK sample taken on day 10

 $^{\dagger}\,t_{_{\mathcal{V}_{2}}}$ is the drug plasma elimination half-life, τ is the interdose interval

Results_

Evolution of performance through time

The best estimation is obtained for a sample collected <u>5 hours</u> after last dose taking on day 10 in both examples:

- · but performance is quite stable through time
- compliance over the 2 last takings is correctly estimated (Table I CV 31%)

Results (cont.)_

Impact of the CV of the residual error model

Table I: Performance of the	estimation met	thod at the b	best sampling	time in the
imatinib example				

	Res. Error	Sampling time	Last 1T	Last 2T	Last 3T
	CV	at day 10	(%)	(%)	(%)
	31%	5 hours	91.8	69.6	44.4
	1%	Any	100	100	100
	5%	2 hours	99.8	99.1	89.0
	10%	3 hours	99.1	92.9	70.5
	20%	5 hours	94.4	77.6	51.0
	30%	5 hours	90.9	68.9	42.6
	40%	5 hours	87.1	63.3	37.8
	50%	5 hours	83.9	58.9	34.5

Comparison of both examples

Performance in both examples are compared using the same magnitude of CV (20%)

Table II: Perforr	mance of th	e estimation method ir	n both examp	les	
Run	t_{γ_2}/τ	Sampling time at day 10	Last 1T (%)	Last 2T (%)	Last 3T (%)
Imat. 20%	0.625	5 hours	94.4	77.6	51.0
FBAL	0.25	5 hours	99.8	71.9	44.6

The performance of the estimation method is better with:

- · smaller error CV in the pop PK model
- \cdot greater ratio t_{y2} / τ (plasma half-life / interdose interval)

Conclusions and perspectives_

· 2 parameters have an effect on the method performance

ratio t_{1/2} / τ

 $\cdot \sigma$ the magnitude of the error model

- In both examples, compliance was correctly estimated over the 2 last scheduled doses

• PK method is not informative enough and should be associated to electronic monitoring in a future clinical study (*OCTO – Compliance to an oral chemotherapy*)

References_

1. Gieschke R et al, *J Pharmacokinet Pharmacodyn* 29(1): 25-47, 2002 2. Widmer et al, *Br J Clin Pharmacol* 62: 97-112, 2006

Figure 1: Compliance patterns